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Preface

Objects have the capacity to distinguish themselves from other objects
and from themselves at different times. The interaction of objects, to-
gether with the process of making distinctions, results in the transfer
of a quantity that we call information. Some objects are capable of dis-
tinguishing themselves in more ways than others. These objects have a
greater information capacity. The quantification of how objects distin-
guish themselves and the relationship of this process to information is
the subject of this book.

As individual needs have arisen in the fields of physics, electrical
engineering and computational science, diverse theories of information
have been developed to serve as conceptual instruments to advance
each field. Based on the foundational Statistical Mechanical physics of
Maxwell and Boltzmann, an entropic theory of information was devel-
oped by Brillouin, Szilard and Schrédinger. In the field of Communica-
tions Engineering, Shannon formulated a theory of information using an
entropy analogue. In computer science a “shortest descriptor” theory of
information was developed independently by Kolmogorov, Solomonoff
and Chaitin.

The considerations presented in this book are an attempt to illumi-
nate the common and essential principles of these approaches and to
propose a unifying, non-semantic theory of information by demonstrat-
ing that the three current major theories listed above can be unified
under the concept of asymmetry, by deriving a general equation of in-
formation through the use of the algebra of symmetry, namely Group
Theory and by making a strong case for the thesis that information is
grounded in asymmetry.

The book draws on examples from a number of fields including
chemistry, physics, engineering and computer science to develop the
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notions of information and entropy and to illustrate their interrela-
tion. The work is intended for readers with a some background in
science or mathematics, but it is hoped the overarching concepts are
general enough and their presentation sufficiently clear to permit the
non-technical reader to follow the discussion.

Chapter 1 provides an introduction to the topic, defines the scope
of the project and outlines the way forward. The technical concepts
of entropy and probability are developed in Chapter 2 by surveying
current theories of information. Distinguishability and its relationship
to information is presented in Chapter 3 along with numerous illus-
trative examples. Chapter 4 introduces symmetry and Group Theory.
This chapter demonstrates the connections between information, en-
tropy and symmetry and shows how these can unify current informa-
tion theories. Finally Chapter 5 summarises the project and identifies
some open questions.

This book represents a first step in developing a theory that may
serve as a general tool for a number of disciplines. I hope that it will
be of some use to researchers in fields that require the development of
informatic metrics or are concerned with the dynamics of information
generation or destruction. Extending this, I would like to see the group-
theoretic account of information develop into an algebra of causation
by the quantification of transferred information.

A large portion of this research was conducted as part of my PhD
dissertation at the University of Newcastle, Australia. I would like to
express my deep gratitude to Cliff Hooker and John Collier for in-
valuable advice and guidance and to George Willis for assistance with
Group Theory, in particular Topological Groups. Early discussions with
Jim Crutchfield at the Santa Fe Institute were useful in clarifying some
initial ideas. I would also like to thank Chris Boucher, Ellen Watson,
Jamie Pullen, Lesley Roberts and Melinda Stokes for much support
and inspiration. Finally, I would also like to thank my parents, Jon
and Lyal.

Sydney, April 2007 Scott Muller
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1

Introduction

Information is a primal concept about which we have deep intuitions.
It forms part of our interface to the world. Thus is seems somewhat
odd that it is only in the last one hundred years or so that attempts
have been made to create mathematically rigorous definitions for in-
formation. Perhaps this is due to a tendency to cast information in an
epistemological or semantic light, thus rendering the problem difficult
to describe using formal analysis. Yet physical objects! are endowed
with independent, self-descriptive capacity. They have innate discern-
able differences that may be employed to differentiate them from oth-
ers or to differentiate one state of an object from another state. These
objects vary in complexity, in the number of ways that they can dis-
tinguish themselves.

Recent attempts to quantify information have come at the problem
with the perspective and toolkits of several specific research areas. As
individual needs have arisen in such fields as physics, electrical engi-
neering and computational science, theories of information have been
developed to serve as conceptual instruments to advance that field.
These theories were not developed totally in isolation. For example,
Shannon [72] in communications engineering was aware of the work
done by Boltzmann, and Chaitin [21], in computational science, was
aware of Shannon’s work. Certain concepts, such as the use of the
frequency concept of probability, are shared by different information
theories, and some terminology, such as ‘entropy’, is used in common,
though often with divergent meanings. However for the most part these
theories of information, while ostensibly describing the same thing, were
developed for specific local needs and only partially overlap in scope.

! This can also include representations of abstract objects such as numbers and
laws.
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The resulting situation is a little like the old joke about the blind
men who were asked to describe an elephant: each felt a different part
of it and each came up with a different account. It is not that their
individual descriptions were incorrect; it is just that they failed to es-
tablish the full picture. I believe that, in the same way, the current
theories of information do not directly address the underlying essence
of information. It is my intention here to start describing the whole
elephant; to begin to give a comprehensive definition of information
that reconciles and hopefully extends the theories developed to date.

In the context of this discussion, I take information to be an objec-
tive property of an object that exists independently of an observer, a
non-conservative quantity that can be created or destroyed and that is
capable of physical work. I assume these things at the outset and will
also provide demonstrations to support them through the course of my
argument.

As my starting point, I take my lead from two theses. The first,
promoted by Collier [24] and others, states that information originates
in the breaking of symmetries. The other is E.T. Jaynes’ Principle of
Maximum Entropy [40]. The symmetry breaking notion leads me to
postulate that information is a way of abstractly representing asymme-
tries. The Maximum Entropy Principle requires that all the information
in a system be accounted for by the removal of non-uniform (read asym-
metric) distributions of microstates until an equiprobable description is
attained for the system. These two approaches, both heavily grounded
in asymmetry, lead me to believe that if one is to quantify information,
one must quantify asymmetries.

In this book I have three primarily goals. The first is to demonstrate
that the three current major theories — the Thermodynamic/Statistical
Mechanics Account, Communication Theory and Algorithmic Informa-
tion Theory — can be unified under the concept of asymmetry. The
second is to derive a general equation of information through the use
of the algebra of symmetry, namely Group Theory. And finally I hope
to make a strong case for the thesis that information is grounded in
asymmetry.

Once developed, this approach might then be used by the three fields
mentioned above to extend research into information itself. Moreover,
because it provides an algebra of information, it can be a valuable tool
for the analysis of physical systems in disparate scientific fields.
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1.1 Structure

Following this introduction, Chapter 2 is a review of the aforemen-
tioned current theories of information. The first port of call (Section
2.2.1) is the Thermodynamic Theory of Information. Since the rela-
tionship between entropy and information has been well established,
the section examines in some detail the history of entropic theory, the
Second Law of Thermodynamics and the combinometric nature of en-
tropy under the paradigm of Statistical Mechanics. This leads to a
detailed examination of Maxwell’s Demon: a thought experiment that
ostensibly violates the Second Law and demonstrates the relationship
between thermodynamic or physical entropy and information. This re-
view of the Thermodynamic/Statistical Mechanics Theory of Informa-
tion draws out four key concepts: the combinometric nature of entropy,
the role of measurement in information systems, the role of memory
in information systems and the capacity of informatic systems to do
work. These are all examined in detail later in the work.

Section 2.2.2 looks briefly at Claude Shannon’s contribution to the
study of information, his development of a Boltzmann-like entropy the-
orem to quantify information capacity.

Section 2.2.3 examines the last of the three major information theo-
ries, Algorithm Information Theory. This section considers the work of
Kolmogorov, Solomonoff and Chaitin, all of whom contributed to the
‘shortest descriptor of a string’ approach to information. Crucial to the
development of their work are the notions of randomness and Turing
machines. These are also studied in this section.

The general concept and specific nature of probability play an im-
portant role in all theories of information. Maxwell, Boltzmann and
Shannon employ probabilistic accounts of system states. Kolmogorov
stresses the importance of the frequency concept of probability. In order
to develop a view of probability to use a symmetry-theory of informa-
tion, Section 2.3 considers the nature of probability.

The construction of a foundational theory of information is started
in Chapter 3. Commencing with a Leibnizian definition of distinguisha-
bility, the relationship between information and distinguishability is es-
tablished. Based on this relationship, an objective, relational model is
defined which couples an informatic object with an information gath-
ering system. This model will serve as the infrastructure for the math-
ematical description of information developed in Chapter 4.

As a precursor to the development of the formal definition of in-
formation, Chapter 4 begins by examining symmetry through a brief
introduction to the algebra of symmetry, Group Theory. Based on the
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previously constructed model of distinguishability, a formal account
of information in terms of Group Theory is developed using Burnside’s
Lemma in Section 4.2.2. This relationship between symmetry and infor-
mation is discussed at some length in Section 4.3 looking in particular
at the generation of information and different types of information.

Section 4.4 considers the association of information with probability,
with special interest paid to Bayes’ theorem and Jaynes’ Maximum
Entropy Principle. Bertrand’s Paradox is investigated as an example of
information generated from asymmetries. The Statistical Mechanical
Theory of Information is cast in the light of my analysis of information
as asymmetry in Section 4.5, with attention given to the Maxwell’s
Demon paradox. In Section 4.6 We examine the relationship between
symmetry and physical entropy and the status of the Third Law of
Thermodynamics, when formulated in terms of the symmetry theory.
This section also further develops the principle that information can
facilitate physical work by considering Gibbs’ Paradox.

The primary issues linking Algorithmic Information Theory and the
asymmetry account of information centre on the notions of randomness,
redundancy and compressibility. Thus these are considered in Section
4.8 by way of an example using the transcendental numbers.

Chapter 5 concludes the books and examines the need and oppor-
tunities for further work. Proof of Burnside’s Lemma and worked ex-
amples used in the body of the text are provided in the Appendices.

I intend throughout this book to draw on examples and techniques
from a variety of scientific fields. To avoid confusion and the possibility
of losing sight of our ultimate goal, I will occasionally include signposts
to summarise where we are and to indicate the direction in which we
are heading.
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Information

2.1 Scope of Information

It is prudent to initially establish the scope of what we mean by ‘infor-
mation’. Many contemporary philosophical theories of information are
subjective in nature. Daniel Dennett , for example, maintains that in-
formation depends on the epistemic state of the receiver and as such is
not independently quantifiable [29]. My understanding of information,
however, is otherwise. I take information to be objective and physical,
to exist independent of the observer and to be capable of producing
work. Although the transfer of information from an informatic object
to an external observer is bounded by the capabilities of the observer
(that is, the subset of information perceived is closed by the observer),
nonetheless the informational attributes of an informatic object exist
independently of the existence of any observer.

What sort of information are we talking about? Information con-
sists of any attributes that can determine, even partially, the state
of an object. This may be genetic information, linguistic information,
electromagnetic radiation, crystal structures, clock faces, symbolic data
strings: practically anything. When I refer to ‘information’ in a quanti-
tative sense, I will use the term synonymously with ‘informatic capac-
ity’. T will labour this point somewhat. I take my definition of ‘infor-
mation’ to be strictly non-epistemic. Though I will talk of one object
01 “having informatic capacity with respect to” another object, Oo,
the information exists independently of human apprehension. The Oy
may well be an inanimate crystal. The information is objective in the
sense that it is a property of the object Oy, filtered by Os. Information
is the facility of an object to distinguish itself.
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In this manner, my use of the term ‘information’ is strictly non-
semantic. It is independent of context and content. It would, for exam-
ple, treat any two 6 character strings composed of any of the 26 English
letters, with no other constraints imposed, are informatically equiva-
lent. ‘f 1 o w e r’ is informatically equivalent to ‘z y * w v u’. However,
the theory, once developed, will be capable of taking into account such
semantic constraints to show how the two strings above informatically
different in the context of a meta-system.

2.2 A Survey of Information Theories

Work on theories of physical information has, over the past century,
arisen from three distinct, though interconnected fields: Thermody-
namics and Statistical Mechanics, Communication Theory and, more
recently, Algorithmic Information Theory. In each of these fields an at-
tempt has been made to try to quantify the amount of information that
is contained in a physical entity or system. Thermodynamic/Statistical
Mechanics (TDSM) approaches have tried to relate a system’s thermo-
dynamic macroproperty, entropy, to the system’s information content
by equating information with the opposite sign of entropy: negentropy.
Entropy, by means of Statistical Mechanics, was shown to represent
a lack of information concerning the microstates of a system subject
to macroconstraints. Post-war research into the burgeoning field of
telecommunications during the late 1940’s led to the creation of Com-
munications Theory (also ambitiously termed “Information Theory”),
in which transfer of information via channels was quantified in terms of
a probability distribution of message components. A quantity that rep-
resented the reduction in uncertainty that a receiver gained on receipt
of the message was found to possess a functional form similar to the
entropy of Statistical Mechanics, and so was equivocally also termed
entropy.

The third approach attacked the problem from a different angle. In
Algorithmic Information Theory, the information content of a string
representation of a system or entity is defined as the number of bits
of the smallest program it takes to generate that string.! It has been
shown that this quantification is also related to both the Statistical
Mechanics and Communication Theory entropies. This section exam-
ines these three approaches and the relationship to each other in some
detail.

1 A string is taken to mean a sequence of symbols, usually alphanumeric characters.
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2.2.1 Thermodynamic Information Theory

All modern physical theories of information make reference to a quan-
tity known as entropy. The term was originally applied by the German
physicist Rudolf Clausius in the middle nineteenth century to distin-
guish between heat source qualities in work cycles. Later work by Boltz-
mann provided a formal relationship between Clausius’ macrolevel en-
tropy and the microdynamics of the molecular level; this was the origin
of Statistical Mechanics.

In this section we examine thermodynamic entropy, Statistical Me-
chanical entropy and the Second Law of Thermodynamics and their
relationship with information.

Thermodynamic Entropy and the Second Law

The origin of the concept of entropy lies in the 1800s during which
time rapid industrial expansion was being powered by increasingly more
complex steam engines. Such engines were specific instances of a more
general class of engines known as heat engines. A heat engine is de-
fined as any device that takes heat as an energy source and produces
mechanical work. The notion of entropy itself was born out of early
considerations of the efficiency of heat engines.

The conversion of work to heat is a relatively simple affair. The
process of friction, for example, can be analysed by considering the
amount of work (W) applied and the quantity of heat generated (Q).
The first law of thermodynamics tells us that the quantity of heat
generated is equal to the amount of work applied: Q = W. That is
to say that the efficiency of energy conversion is 100%. Furthermore
this conversion can be carried out indefinitely. This is the First Law of
Thermodynamics.

The conversion of heat to work, however, is less straightforward.
The isothermal expansion of a hot gas against a piston will produce
mechanical work, but eventually the pressure relative to the external
pressure will drop to a point where no more work can be done. Without
some sort of cyclic process whereby the system is periodically returned
to its initial state after producing work, the process will not continue
indefinitely.

If a cyclic process is employed, each one of the cycles consists of
a number of steps in which the system interacts with the surround-
ing environment. The cycle of a heat engine will consist of a series of
exchanges between itself and the environment where it:
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takes heat (Q)from a reservoir at high temperature;
delivers heat (Qr) to a reservoir at low temperature;
delivers work (W) to the environment.

A schematic of the process is shown below in Fig. 2.1.

w
Heat Engine —>

Fig. 2.1. Heat Engine Schematic

The efficiency 7 of such an engine is defined as work obtained per
unit heat in: W

T Qu
The first law of thermodynamics again tells us that, given no internal

accumulation of energy, the work produced is equal to the difference
between heat in and heat out:

W = Qp — Q. Thus the efficiency equation becomes:

n:QH_QL
Qu

n
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or:
n=1 Qu

From this expression we can see that the efficiency of a heat engine will

only be unity (i.e. 100%) if @y, is 0, that is that there be no flow from

the engine.

In 1824 a French engineer, Sadi Carnot, published “Réflexions sur
la puissance du feu, et sur les machines propre a développer cette puis-
sance” (Reflections on the Motive Power of Fire and on Machines Fitted
to Develop that Power). Carnot showed that the most efficient engine
(subsequently termed a Carnot Engine) is one in which all operations in
the cycle are reversible. That is to say: No engine operating between two
heat reservoirs can be more efficient than a Carnot Engine operating
between the same two reservoirs. This is known as Carnot’s Theorem.
It should be noted that since every operation in the Carnot Engine is
reversible, the whole engine could be run in reverse to create a Carnot
Refrigerator. In this mode the same work W is performed on the engine
and heat Q1 is absorbed from the low temperature reservoir. Heat Q) is
rejected to the high temperature reservoir, thus pumping heat from a
low temperature to a higher temperature.

In thermodynamics, reversibility has a very specific meaning. A pro-
cess is reversible just in case that: 1) heat flows are infinitely rapid so
that the system is always in quasi-equilibrium with the environment
and 2) there are no dissipative effects so the system is, in a sense, ther-
mally frictionless. In the reversible Carnot Engine there are no friction
losses or waste heat. It can be run backwards with the same absolute
values of W, Q1 and Qp to act as a heat pump. One cycle of the Carnot
Engine running in normal mode followed by one cycle running in re-
verse (refrigerator) mode would leave the engine system (as shown in
Fig. 2.2) and the surrounding universe completely unchanged. Carnot’s
Theorem states that no engine is more efficient than a Carnot engine.
We can see why as follows. Imagine a candidate engine X operating
between the same reservoirs shown in Fig. 2.2, taking the same heat
Qg in and depositing @)1, out and assume that the work produced is
W'. Now assume that W’ > W. If this were the case, we should be
able to set aside W Joules of work from engine X to run a Carnot
refrigerator between the two reservoirs and produce W’ — W Joules of
extra work with no other effect. This is clearly impossible. At the very
most W’ = W. Here we note that W represents a cap on the amount
of work that may be obtained from this heat source system. This value
is independent of the design of engines. It is, as Feynman puts it, “a
property of the world, not a property of a particular engine” [33].
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w
Heat Engine ‘—

Fig. 2.2. : Carnot Refrigerator

In the real world there exists no process that operates without loss.
There is no such thing as a frictionless piston. So a Carnot Engine can-
not actually exist and it is this discrepancy between real world engines
and Carnot’s Engine that was the motivation for thought about the
Second Law of Thermodynamics. It is our experience that no engine —
natural or constructed — has been found to convert heat to mechanical
work and deliver no waste heat. This is the basis of the Second Law
of Thermodynamics and, based on empirical evidence, we assume it to
be axiomatic in nature. Planck considers this and offers the following
definition:

“Since the second fundamental principle of thermodynamic
is, like the first, an empirical law, we can speak of its proof only
in so far as its total purport may be deduced from a single simple
law of experience about which there is no doubt. We, therefore,
put forward the following proposition as being given by direct
experience: It is impossible to construct an engine which will
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work in a complete cycle, and produce no effect except the raising
of a weight and the cooling of a heat reservoir” [63].

The term entropy was introduced into the physics lexicon by Rudolf
Clausius in 1865 [22]. Clausius advanced the field of thermodynamics
by formalising the Second Law of Thermodynamics using methodology
developed by Carnot. Clausius showed that a continuous reversible heat
engine cycle could be modelled as many reversible steps which may be
considered as steps in consecutive Carnot cycles. For the entire cycle
consisting of j Carnot cycles, the following relationship holds true:

o _,

where @; is the heat transferred in Carnot cycle j at temperature 7}.
By taking the limit as each step size goes to 0 and j goes to infinity,
an equation may be developed for a continuous reversible cycle:

S

the R indicates that expression is true only for reversible cycles.

It follows from the preceding, that any reversible cycle may be di-
vided in two parts: an outgoing path Py (from point a to point b on
the cycle) and a returning path Py (from point b to point a), with the

a T b T

bdQ bdQ
RP, . T:RPQ . T

This indicates that the quantity , f; #is independent of the actual
reversible path from a to b. Thus there exists a thermodynamic prop-
erty?, the difference of which between a final state and an initial state

is equal to the quantity, f; #. Clausius named this property entropy
and, assigning it the symbol S, defined it as follows:

bdQ
R/CLT:S[)—SCL

Clausius explained the nomenclature thus:

and,

2 This is Feynman’s “property of the real world” alluded to earlier.
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“If we wish to designate S by a proper name we can say
of it that it is the transformation content of the body, in the
same way that we say of the quantity U that it is the heat and
work content of the body. However, since I think it is better to
take the names of such quantities as these, which are impor-
tant for science, from the ancient languages, so that they can
be introduced without change into all the modern languages,
I proposed to name the magnitude S the entropy of the body,
from the Greek word nrponn a transformation. I have intention-
ally formed the word entropy so as to be as similar as possible
to the word energy, since both these quantities, which are to
be known by these names, are so nearly related to each other
in their physical significance that a certain similarity in their
names seemed to me advantageous” [22].

It is critical to realise that nothing at all is said about the absolute
value of entropy; only the difference in entropy is defined. To under-
stand the nature and full significance of entropy, it is necessary to
consider, not just entropy changes in a particular system under exami-
nation, but all entropic changes in the universe due to thermodynamic
action by the system. Any reversible process in a system in contact with
a reservoir will cause an internal change in entropy of say dSgystem = +
dQr/T where dQr heat is absorbed at temperature T. Since the same
amount of heat is transferred from the reservoir the change in entropy of
the reservoir is dSyeservoir = - dQr/T. Thus the nett change in entropy
caused by the process for the whole universe is dSystem + dSreservoir
= 0. The change in entropy of the universe for a reversible process
is zero. However, reversible processes are merely idealisations. All real
processes are irreversible and the nett universal entropy change for ir-
reversible processes is not zero. Clausius showed that for irreversible
cycles the integral of the ratio of heat absorbed by the system to the
temperature at which the heat is received is always less than zero:

VER

From this result it can be shown that for irreversible processes,
dSsystem + dSreservoir > 0. Combining this with the above statement
for reversible systems, we arrive a statement of what is known as the
entropy principle and applies to all systems:

ASuniverse 2 0
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The upshot of this is that any process will at best cause no increase in
the entropy of the universe, but all real processes will contribute to the
increase of the entropy of the universe. This was realised by Clausius
who presented his version of the first and Second Laws:

“1. The energy of the universe is constant
2. The entropy of the universe tends toward a maximum”
[22]).

Planck defined the entropy principle as:

“Every physical or chemical process in nature takes place in
such a way as to increase the sum of the entropies of all bodies
taking part in the process. In the limit, i.e. for all reversible
processes, the sum of all entropies remains unchanged” [63].

As an historical aside it is perhaps interesting to reflect on whether
Carnot held some conception of what we now know as entropy. Carnot’s
theory of heat was primitive by modern standards. He considered that
work done by a heat engine was generated by the movement of calorique
from a hot body to a cooler body and was conserved in the transition.

Clausius and William Thomson (Lord Kelvin) showed that the ‘heat’
in fact was not conserved in these processes. However, as Zemansky
and Dittman observe:

“Carnot used chaleur when referring to heat in general, but
when referring to the motive power of fire that is brought about
when heat enters an engine at high temperature and leaves at
a low temperature, he used the expression chute de calorique,
never chute de chaleur. It is of the opinion of some scientists
that Carnot had at the back of his mind the concept of entropy,
for which he had reserved the term calorique. This seems incred-
ible, and yet is a remarkable circumstance that if the expression
chute de calorique is translated as “fall of entropy,” many of
the objections to Carnot’s work raised by Kelvin, Clapeyron,
Clausius, and others are no longer valid” [88].

This is sustained when one considers that in Carnot’s time the
caloric theory of heat as a fluid dominated and much of Carnot’s heat
cycle theories were generated as analogies to water-wheel engines. What
Carnot was trying to capture was a measure of heat quality that cor-
responded to the potential energy of water: the higher a stream feed
enters above the base pool, the more work it can do per mass unit.
This certainly corresponds to Lord Kelvin’s “grade” of energy — that
energy at a higher temperature, in some sense, has a higher quality.
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In returning to the main discussion, we observe that we have ar-
rived at the point where we can say that entropy is a thermodynamic
property, with the particular characteristics described by the entropy
principle. It is defined only by its changing. It is related to heat flows
in a system and, like work and temperature, it is a purely macroscopic
property governed by system state coordinates. But what are the mi-
crophysical actions that give rise to such macrocharacteristics? How
are we to understand the underlying principles of entropy?

By stepping away from heat engines for a moment and examining
what occurs at the microscopic level in examples of entropy increase in
natural systems, correlations between entropy and order relationships
are revealed. Consider the isothermal sublimation of dry ice to gaseous
COy at atmospheric pressure at 194.8K (—78.4°C). Heat is taken from
the environment at this temperature increasing the internal energy of
the solid to the point where molecules escape to become free gas. The
enthalpy of sublimation® is 26.1 kJ/mol [77] which means the entropy
increase associated with the sublimation of one gram of COs can be
calculated to be 3.04 J/K.

When forming a microphysical conception of entropy in such transi-
tions, there is a tendency to associate increasing entropy with increas-
ing disorder. Melting and sublimation are often used as illustrations
(see [88]). However this approach can be somewhat misleading. Cer-
tainly phase transitions in melting a regular crystal to random liquid
are associated with entropy increase, as is the transition of a material
from a ferromagnetic to a paramagnetic state. These are examples of
changes in microstructure from regularity to irregularity. But it is not
the erosion of patterned regularity that directly accounts for entropy
increase in these examples. Rather they are specific cases of a more
general principle: that of increasing degrees of freedom.

In the sublimation example, the solid carbon dioxide leading up
to and at the point of sublimation is a molecular solid. While form-
ing regular structures at these lower temperatures the molecules are
held together by very weak intermolecular forces (not by ionic or co-
valent bounds like metals or ice) and their dipole moments are zero.
The molecules are held together in a solid state by induced dipole
— induced dipole interaction? where instantaneous fluctuations in the
electron density distribution in the non-polar compound produces a
constantly changing bonding microstate. The induced dipole — induced
dipole interaction is a very weak bond (0.4-4kJ/mol compared with

3 The heat required for sublimation to occur.
4 Also called London forces.
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100-1000 kJ/mol for ionic or covalent bonds) that reduces the freedom
of movement of the molecules. With strong bonds the freedom of move-
ment is reduced by a greater degree. It is important to recognize that
bonding does not primarily create regularities; it reduces the degrees
of freedom. The order that emerges is wholly due to a restriction of
kinetic phase space.

The tendency to equate order with regularity should be resisted.
It is certainly the case that a highly regular system will possess fewer
degrees of freedom than an irregular one. But regularity is not the only
form of order. To further illustrate the contrasting notions of regularity
and freedom let us return to the realm of heat engines and consider the
very rapid, quasi-isothermal expansion of an ideal gas against a vacuum.
In this case the result is similar to a slow isothermal expansion with the
state variable entropy increasing as the volume in which the molecules
are free to move increases. Here AS = AQ/T. It seems counterintuitive
to say that there is more disorder in the final state than in the initial
compressed state. There is the same number of molecules, with the same
total kinetic energy moving in a random manner in both the initial and
final states. There has been no change of structural regularity; only
the volume has increased to provide greater freedom of movement to
the molecules. When physical constraints are released, greater freedom
is given to the microdynamics. This may also, in some systems, be
reflected in an increase in disorder but it is the increased freedom that
appears to be strongly correlated with an increase in the macroproperty
entropy rather than some quantity order.’

We have reached the end of our introduction to entropy and the
Second Law of Thermodynamics and we pause the list the important
concepts to take from this section regarding entropy as a thermody-
namic, macroscopic phenomenon. They are threefold. The first is that
entropy and work are related concepts. Entropy limits the amount of
work one may obtain from a physical system. The second is that for all
real systems, the sum of the entropies of all bodies taking part in the
system increases over time. This is the ‘entropy principle’. Finally there
exists a relationship between the macroscopic property of entropy and
the degrees of freedom possessed by constituent microstates. We will
look at this relationship between entropy and microstates in the next
section; however before doing so, it is necessary, for completeness, to
look at the Third Law of Thermodynamics.

5 This is to say that greater concentration is not more orderly in any intuitive sense.
(Consider millions grains of salt contained in a salt shaker and the same grains
scattered on the table when the container is magically removed.)
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Like the first two laws of thermodynamics, the third is a postu-
late and it relates to the absolute value of entropy. As noted above
thermodynamic entropy only has physical significance when differences
are considered. This is due to the integration operator®; the nature of
absolute entropy is not defined. In 1906 Walther Nernst proposed a
theorem to address the problem of determining an absolute value of
entropy. “The gist of the theorem is contained in the statement that,
as the temperature diminishes indefinitely the entropy of a chemically
homogenous body of finite density approaches indefinitely near to a
definite value, which is independent of the pressure, the state of ag-
gregation and of the special chemical modification” [63]. The ‘definite
value’ that entropy approaches is shown to be zero at absolute zero (0
K). Thus for homogenous solids and liquids (e.g. crystals) the theorem
may be restated as: Entropy approaches zero as temperature approaches
absolute zero. This is the third law of thermodynamics. We will examine
the third law in more detail in Section 4.6.2.

Statistical Mechanics

The discussion at the end of the previous section concerning degrees of
freedom and microphysical aspects of entropy was informal and quali-
tative in nature. In this section these considerations are extended and
developed in a historical review of the formal relationship between en-
tropy and system microstates. This review will prove valuable later
when we consider the combinometric relationship between entropy and
information.

The First Formulation

The first formulation of the relationship between thermodynamics of
a system and its underlying molecular states was proposed by James
Clerk Maxwell and Ludwig Boltzmann, though research into the un-
derlying atomic kinetics of gases had commenced even earlier than
Carnot’s initial work on the laws of thermodynamics. In 1738 Daniel
Bernoulli developed a particulate model of a gas which, assuming uni-
form particle velocity, predicted the inverse pressure — volume rela-
tionship at constant temperature and described the relationship of the
square of (uniform) particle velocity to temperature. And, although
similar work was carried out by W. Herepath (who, importantly, iden-
tified heat with internal motion) and J. Waterston (calculated specific

6 On integration without limits the equation will produce an arbitrary additive
constant.
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heat relationships based on kinetics) during the first half of the nine-
teenth century, it wasn’t until August Karl Kronig published a paper
in 1856 detailing results akin to those of his kinetic-theory predecessors
that an interest in microstate theories was kindled generally. The most
likely reason for the less-than-receptive attitude towards a particulate
theory of gases before Kronig is the sway that the caloric theory of heat
held on the scientific community during the early 1800s.

Clausius continued the work on kinetic theory in the late 1850s, by
taking into account the effect of molecular collision and by expanding
internal energy calculations to include rotational and vibrational com-
ponents, though, as with Bernoulli, the assumption of uniform molecu-
lar velocities (the gleichberechtigt assumption) remained. Clausius’ con-
sideration of the effect of molecular collision proved a vital point for
it enabled future researchers, in particular Maxwell, to conclude that
the uniform velocity assumption was unsustainable. If all molecules ini-
tially possessed identical velocities, they would not continue so because
interactions between them would distribute the energy over a range of
different velocities.

Maxwell was instrumental in developing a clear concept of the dy-
namic patterns that groups of molecules form in monatomic gases. He
realised that while velocities of individual molecules were continually
changing due to collisions, the velocity profile of the population at
equilibrium was static and could be described. By considering subpop-
ulations in velocity ranges, Maxwell developed what would lead to the
first probabilistic account of molecular kinetics. The result of these con-
siderations yielded the number of monatomic molecules in a discrete
velocity range v to v + Av can stated as follows:

An = Ae BEFT2) A Ay Az

Where: .9, 2 are the velocity components in Cartesian space and A
and B are two constants determined by total number molecules, to-
tal mass and the total kinetic energy. The relationship is known as
Maxwell’s Law.”® The next major step toward a microdynamic ac-
count of thermodynamics occurred in 1868 with Boltzmann developing
the kinetic theory of gases by constructing a significant generalisation
of Maxwell’s distribution law. Boltzmann’s theory, like Maxwell’s, al-
lowed for non-uniform molecular velocities but also extended the notion
to allow molecular non-uniformities of other types, specifically those

" Or, more completely, Mazwell’s Distribution Law for Velocities.
8 Given the form of the equation, it appears that Maxwell may well have been
influenced by Gauss’s then recent work on error distribution.
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that were spatially dependent (eg. field effects). Rather than consider-
ing subpopulations in discrete velocity ranges, Boltzmann considered
discrete ranges of state that extended the model to include energies
beyond just kinetic energy. Later commentators, the Ehrenfests, have
described the model thus:

“If At denotes a very small range of variation in the state of
a molecule — so characterized that the coordinates and velocities
of all atoms are enclosed by suitable limits, ... then for the case
of thermal equilibrium

f-Ar=ae . Ar

gives the number of those molecules whose states lie in the range
of variation Ar. Here £ denotes the total energy the molecule
has in this state (kinetic energy + external potential energy +
internal potential energy) and « and 3 are two constants which
are to be determined just as in the case of Maxwell’s law” [32].

In the appropriate limit, Boltzmann’s distribution reduces to Maxell’s
distribution, hence the equation is known as the Maxwell-Boltzmann
distribution law. This equation gives the energy distribution of the
molecular system and has equilibrium as a stationary solution.

In 1872, Boltzmann undertook the development of a theorem to
show that only equilibrium is a stationary solution, that all distribu-
tions will approach the Maxwell-Boltzmann distribution. As noted pre-
viously, in all real, irreversible processes entropy increases. Boltzmann
defined a function, H, which could be applied to any distribution.

“Consider a distribution, which may be arbitrarily different
from a Maxwell-Boltzmann distribution, and let us denote by
f-A7 the number of those molecules whose state lies in the small
range A7 of the state variables. Then we define the H-function
as

H=) flogf-Ar

Where the sum is to be taken over all the possible domains of
AT” [32].

Boltzmann demonstrated that the H-function decreases monotonically
with time so that for a time series t1, t2, t3 ... t, the corresponding sys-
tem H values are Hy > Hy > Hs ... > H,,. On quick inspection we see
that this behaves just as the negative value of thermodynamic entropy



2.2 A Survey of Information Theories 19

would and thus consider H to be an analogue of thermodynamic negen-
tropy.? This gives us our first expression of entropy in microdynamic
terms.

As a corollary to the theorem, Boltzmann showed that all non-
Maxwell-Boltzmann distributions will, given time, approach a Maxwell-
Boltzmann distribution. Further, Boltzmann showed that this is unique:
all non-Maxwell-Boltzmann distributions will approach only a Maxwell-
Boltzmann distribution. When the Maxwell-Boltzmann distribution is
attained the equalities in the above H progression hold.

Since the work of Clausius, there has been embedded in the kinetic
theory a postulate which eventually became the focus of criticism of the
theory. The Stosszahlansatz'® is an important assumption concerning
the intermolecular collisions in a gas. In essence the assumption as-
signs equal probability to collisions. The number of collisions between
two groups of molecules (e.g. those of two different velocities) is as-
sumed to be independent of all factors except the relative densities of
the two groups, total number of molecules and the proportional area
swept out'! by one of the groups of molecules. The inclusion of the
Stosszahlansatz in Maxwell and Boltzmann’s work led to a distribu-
tion that is stationary.'> Questions soon arose regarding the capacity
of a theory based on reversible kinetics to explain irreversible ther-
modynamic processes. How could a theory of stationary distributions
deal with non-stationary processes, that is, processes with temporal
direction?

However the H-theorem does not answer these questions founded
in irreversibility arguments and two new objections demand consid-
eration. The first was proposed by Josef Loschmidt in 1876. Termed
Umkehreinwand'3, the objection was based on the reversible kinetics
of the microstates. Consider the microstates of a gas that has reached
equilibrium, that is at time n after the H-progression H; > Hy > Hj

. > H,_1= H,. Now consider an identical copy of this equilibrium
gas but with all velocity vectors reversed. All molecules have the same
speed as the original but the opposite direction. Because the H-theorem
deals solely with scalar quantities, the H-function of the copy, H}, has
the same value as the original H; and since the mechanics of the system
dictate energy conservation, the copy will therefore progress through

9 Negentropy, the negative value of entropy, will be discussed in Section 2.2.1.

10 Literally: Collision Number Assumption.

1 The volume “swept out” by a molecule can be considered to be all those points
which lie in a path that is a collision-course for that molecule.

12°A stationary distribution is one that does not statistically change over time.

13 Reversibility Objection
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the following phases: H,=H/,_, ... <Hj; <H) < H]. So here we have an
apparent instance of a gas at equilibrium spontaneously moving mono-
tonically away from equilibrium; moving from a Maxwell-Boltzmann
distribution to a non-Maxwell-Boltzmann distribution.

The second objection, the Wiederkehreinwand'*, proposed by Ernst
Zermelo in 1896, attacks the problem from a different angle. Henri
Poincaré showed in 1889 that for energetically conservative systems
bound in a finite space, the trajectory in phase space of a system start-
ing from a specified initial state will, except for a ‘vanishingly small’
number of initial states, eventually return arbitrarily close to the initial
state. This is known as Poincaré’s Recurrence theorem. Zermelo’s argu-
ment employed Poincaré’s Recurrence theorem to point out that if we
take a gas system that is not at equilibrium, a non-Maxwell-Boltzmann
distribution, then at some state in its future the state of the system will
be arbitrarily close to its initial state. This is at odds with Boltzmann’s
claim that all non-Maxwell-Boltzmann distributions move monotoni-
cally to a Maxwell-Boltzmann distribution and stay there because they
are at equilibrium.

These objections led Boltzmann to a revised, probabilistic formula-
tion of kinetic theory.

The New Formulation

In 1877 Boltzmann issued a reply to Loschmidt’s Umkehreinwand.
Boltzmann argued that, while it is true that the evolution of a sys-
tem from a specific initial microstate does depend on exactly those
initial conditions, it is possible to provide a general account of all gases
by adopting a statistical approach. Every individual microstate has the
same probability of occurrence, but the microstates that correspond to
the macroequilibrium conditions are more numerous than those that
correspond to non-equilibrium macrostates at any given time instance.
That is, for a number of arbitrarily chosen initial microstates, many
more initial microstates corresponding to non-equilibrium macrostates
will tend to microstates corresponding to equilibrium macrostates than
vice versa.

Boltzmann formulated a model based on dividing microstate space
into small, discrete ranges: spatial momentum ranges. The project then
became to work out, given macro constraints (total energy, total num-
ber of molecules), how many ways can the molecules be distributed
across these ranges? A distribution is the number of particles in each

4 Recurrence Objection
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range. A number of distinct system states can have the same distri-
bution, simply by swapping distinct particles between particle states.
Boltzmann demonstrated that, if the probability of a distribution is
defined by the number of ways a distribution can be constructed by
assigning molecules to ranges then there exists a most probable distri-
bution and that in the limit of the number of ranges going to infinity
and range size going to zero this distribution uniquely corresponds to
the Maxwell-Boltzmann distribution.

Boltzmann defined W, the probability that a system is in a particu-
lar microstate using the distribution definition.'> Combining this with
the H-theorem and the notion of thermodynamic entropy, he arrived
at the following kinetic description of thermodynamic entropy:

S=—-KlogW
The term W can be calculated as follows:

N
~ I

W

where NV is the total number of systems and V; is the number of systems
in a particular microstate i. This new formulation did not, however,
stop criticism based on Umkehreinwand-like reversibility arguments.
As Sklar observes,

“Boltzmann’s new statistical interpretation of the H-theorem
seems to tell us that we ought to consider transitions from mi-
crostates corresponding to a non-equilibrium macrocondition to
microstates corresponding to a condition closer to equilibrium
as more ‘probable’ than transitions of the reverse kind. But if,
as Boltzmann would have us believe, all microstates have equal
probability, this seems impossible. For given any pair of mi-
crostates, S1, So such that Sy evolves to Sy after a certain time
interval, there will be a pair S;’, So’ — the states obtained by
reversing the directions of motion in the respective original mi-
crostates while keeping speeds and positions constant — such
that So’ is closer to equilibrium than S;’ and yet Sy’ evolves to
S1’ over the same time interval. So these ‘anti-kinetic’ transi-
tions should be as probable as ‘kinetic’ transitions” [73].

5 The number of ways a system can be in a particular state divided by the total
system permutations.
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Eventually Boltzmann gave up notions of monotonic evolution of
non-equilibrium systems toward a Maxwell-Boltzmann distribution. In-
stead he considered that over large amounts of time, systems would
remain close to equilibrium for most of the time, occasionally drifting
away from equilibrium distribution an arbitrary distance and return-
ing at a frequency that is inversely proportional to the distance away
from equilibrium. This, Boltzmann argued is consistent with Poincaré’s
Recurrence theorem.

With respect to our analysis of information theory, the crucial out-
come of Maxwell and Boltzmann’s work as described in this section is
the construction of a formal quantifier of the number of unique dis-
tributions that distinct system states may have. The development of a
notion of Boltzmann’s thermodynamic probability, W, provides us with
a means of counting distinct macrostates and, as we shall see later, it is
a system’s capacity to exist in uniquely identifiable states that governs
the quality of information it is capable of possessing.

We also see that the notion of distinguishability is crucial. Indeed
it will form a fundamental part of my account of information (see Sec-
tion 3.1). For the ability to distinguish between particles in different
energy ranges potentially allows one to extract work by applying this
information to a sorting process. However this threatens to violate the
Second Law. This ‘paradox’ is known as Maxwell’s Demon, but we will
see that, instead of being a paradox, it is instead a demonstration that
information can do physical work in a system.

Maxwell’s Demon

At the conceptual centre of thermodynamic considerations of informa-
tion is the relationship between entropy and information. Historical
consideration of the nexus arose as the result of a thought experiment
proposed by Maxwell in 1871 in his Theory of Heat. Maxwell consid-
ered a gaseous system contained at equilibrium in an insulated vessel
consisting of two chambers, A and B, separated by a trap door. Sta-
tioned at the trap door was a Demon: a being “whose faculties are so
sharpened that he can follow every molecule in its course” (Maxwell
quoted in [51]). Such a Demon would operate the trap door (without
friction or inertia) permitting only faster molecules to travel from A
to B and slower molecules to travel from B to A.'® In Fig. 2.3. below,
a schematic representation of the system is shown with the varying
molecular velocities represented by varying arrow sizes.

16 «“Fast” and “Slow” could be designated as being greater-than and less-than the
system average molecular velocity respectively.
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Fig. 2.3. Maxwell’s Demon

The conceptual paradox rests in the fact that as time progresses,
increasingly more fast molecules will occupy chamber B and the slower
molecules will occupy chamber A. If the total population is sufficiently
large and the initial velocity distribution was symmetric, approximately
equal numbers of molecules will eventually occupy both chambers but
the molecules in chamber B will have a greater total kinetic energy
than those in chamber A resulting in increased temperature. This is
in conflict with Clausius’ form of the Second Law of Thermodynamics
in that it is equivalent to heat flow from a low temperature to a high
temperature with no other effect.

The partitioning of energy by the Demon could also manifest as
an increase in pressure that could be used to do work — pushing a
piston for example. Thus this formulation is in direct contradiction to
Planck’s interpretation of the Second Law, for if we reset the piston,
allow the molecules to remix and start all over again, we would have
a perpetual motion machine of the second kind.!” If this process is
performed isothermally at temperature T (that is in contact with an
infinite reservoir at temperature T) and produces work W with no
waste heat, then the heat transferred from the reservoir to the gas is
Q=W which satisfies the first law. However, the change in entropy is

17 A distinction between types of perpetual motion machine was introduced by W.
Ostwald late in the 19" century. A perpetuum mobile of the first kind is one that
violates the first law of thermodynamics. A perpetuum mobile of the second kind
violates the Second Law.
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AS =-Q/T.

It is clear that the actions of the Demon constitute a sorting process;
faster molecules are separated from slower ones and vice versa, so that
after some time they are divided into two groups. To maintain the
integrity of the Second Law, entropy must somewhere be produced in
a quantity at least as great as that reduced by the sorting. The most
obvious place to look for this increase in entropy is in the Demon itself.
Leff and Rex consider the following isothermal ‘pressure-Demon’ cycle
consisting of the following three steps:

“(a) The Demon reduces the gas entropy at fixed temper-
ature and energy by letting molecules through the partition in
one direction only. This sorting process generates pressure and
density differences across the partition.

(b) The gas returns to its initial state by doing isothermal
work on an external load. Specifically; the partition becomes a
frictionless piston coupled to a load, moving slowly to a posi-
tion of mechanical equilibrium (away from the container’s cen-
tre) with zero pressure and density gradients across the piston.
The piston is then withdrawn and reinserted at the container’s
centre.

(c) The Demon is returned to its initial state” [51].

Thermodynamic analysis of the cycle reveals that, if we are to preserve
the integrity of the Second Law, the entropy of the Demon must in-
crease in order to ‘pay’ for the entropy reduction of the gas in step (a).
The work done in (b) is compensated for by heat transfer ) = W from
the reservoir. There is no change in the load’s entropy. If the Demon is
to continue its sorting function through repeated iterations of the cycle,
the entropy that it accrues in step (a) must be reduced by a resetting
process otherwise the accumulation of entropy would eventually render
it inoperable. Hence the resetting of the Demon in step (c), which must
also be a thermodynamic process. So we can assume that the Demon
returned “to its initial state by energy exchanges with the reservoir and
a reversible work source, with work E being done on the Demon. The
Demon’s entropy decrease here must be compensated for by an entropy
increase in the reservoir. We conclude that resetting the Demon results
in heat transfer to the reservoir” (ibid). Leff and Rex continue,

“Overall, in (a)—(c) the entropy change of the universe equals
that of the reservoir. The Second Law guarantees this is non-
negative; i.e., the reservoir cannot lose energy. The cyclic process
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results in an increased load energy and a reservoir internal en-
ergy that is no lower than its initial value. The first law implies
that the work source loses sufficient internal energy to generate
the above gains; in particular, the source does positive work in
(c). The relevant energy transfers during the cycle are: Work
W > 0 by gas on load, work E > 0 by work source on Demon,
and energy ¥ — W > 0 added to the reservoir. The entropy
change of the universe is (£ — W)/T > 0, where T is the reser-
voir temperature” (ibid).

We see that in Leff and Rex’s cycle, if the Second Law is preserved,
the resetting of the Demon is of fundamental importance. Such consid-
erations of the importance of resetting or erasure also figure centrally
in work by recent researchers constructing computational Demon mod-
els. Landauer introduced the concept of “logical irreversibility”: the
transformation of any computational memory state to an erased one is
a many-to-one mapping which has no unique inverse. Similarly, Ben-
nett showed that, in its simplest form, the Demon’s memory may be
considered to be a two-state system: ‘did nothing’/ ‘let through’. Prior
to making a measurement the Demon is constrained to be in just one
state: the reference or ‘did nothing’ state. On measuring a molecule, the
Demon has the dimensionality of its state space doubled so that it may
now be in either one or the other state. Thus Bennett takes erasure to
be the recompression of state space to the reference state, regardless of
the prior measurement states. This compression is logically irreversible
and generates an entropy increase in the reservoir.

Some researchers'® questioned the possibility of a Demon operating
as required by the thought experiment since, located inside the gas, it
must be continually bombarded by gas molecules and absorbing energy.
This bombardment would interfere with the Demon making accurate
measurements. Others pointed out the need for a means of measuring
molecular velocities and the need for some kind of memory faculty. In
particular, Leo Szilard demonstrated, using a simplified one molecule
model, that the process of measuring the position and velocity of the
molecule generated at least as much entropy as was reduced in the gas.
Szilard’s model [79] provides a tractable simplification of Maxwell’s
Demon embedded in a work cycle that enables us to see the relation-
ship between information, measurement and the thermodynamics of
the Demon.

Imagine a vertical cylinder that can be horizontally divided into
two, not necessarily equal, sections with volumes V7 and V5 by the

18 Smoluchowski and Feynman
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insertion of partition. The cylinder, which is in contact with an infinite
reservoir at temperature 7T', contains a single molecule which is free to
move about the cylinder under thermal motion. On the insertion of
the partition, an observer notes whether the molecule is caught in the
upper or lower sections of the cylinder. This step is measurement and
important to Szilard’s preservation of the Second Law. The partition
is now free to move the level of the cylinder, acting as a piston, as the
molecule-gas undergoes isothermal expansion. If the molecule is caught
in the upper section, the piston will move slowly downward changing
the volume from V; to Vi 4+ V5.19 A weight could be attached to the
piston to produce work. On completion of the expansion the partition
is removed and the process is repeated ad infinitum with the weight
being attached in a manner that will ensure that it is always displaced
upwards. This attachment will require a binary switch that will be set
by the observer depending on the direction of motion of the piston (i.e.
whether the molecule is in the upper or lower part of the cylinder).

Without more explanation than “reasonable assumption”, Szilard
compensates the decrease in system entropy with the entropy increase
generated by the measurement process, saying,

“One may reasonably assume that a measurement procedure
is fundamentally associated with a certain definite average en-
tropy production, and that this restores concordance with the
Second Law. The amount of entropy generated by the measure-
ment may, of course, always be greater than this fundamental
amount, but not smaller” [79].

In the binary-state monomolecular system, Szilard calculated this en-
tropy generated by measurement to be at least equal to k log 2 (where
k is a constant). Memory was also an important component of Szilard’s
model. If we denote the physical position of the molecule by indepen-
dent variable z and a dependent measuring variable by y, then when =
and y are coupled (measurement), = sets the value of y. The variables
are then uncoupled and x can vary while y keeps the value it had at
coupling. This is a form of memory and it is crucial for the cycle if
it is to produce work. So although Szilard does not explicitly connect
information with entropy, his analysis of measurement, utilisation of
measurement and memory certainly implies the existence of a role that
most would intuitively think of information as filling.

Twenty-one years later, Leon Brillouin directly examined the rela-
tionship between information and entropy. Brillouin expanded Szilard’s

19 Tt should be noted here that Szilard ignores the effects of gravity.
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work on the entropy of measurement by considering the information
gain associated with measurement. Following Shannon (see Section
2.2.2), Brillouin, from the outset, derives a definition of information
based on statistical considerations:

“Let us consider a situation in which P, different possible
things might happen, but with the condition that these Py pos-
sible outcomes are equally probable a priori. This is the initial
situation, when we have no special information about the sys-
tem under consideration. If we obtain more information about
the problem, we may be able to specify that only one out of the
P, outcomes be actually realized. The greater the uncertainty in
the initial problem is, the greater Py will be, and the larger will
be the amount of information required to make the selection.
Summarizing, we have:

Initial situation: Iy = 0 with Fy equally probable outcomes;

Final situation: I; # 0 with P; = 1, i.e. one single outcome
selected.

The symbol I denotes information, and the definition of in-

formation is
Il =Kln Po

Where K is a constant and ‘In” means the natural logarithm to
the base e” [11].

The relationship that information has with entropy, according to
Brillouin, is that of a reversal of sign.?’ He attributes Szilard with
showing that Maxwell’s Demon “actually transforms ‘information’ into
‘negative entropy”’ [10]. By constructing a model in which the Demon
has a single photon source (a high filament temperature electric torch)
to identify molecules, Brillouin shows that the torch generates negative
entropy in the system. The Demon obtains “informations” concerning
the incoming molecules from this negative entropy and acts on these
by operating the trap door. The sorting rebuilds the negative entropy,
thus forming a cycle:

negentropy — information — negentropy

The notion of negentropy “corresponds to ‘grade’ of energy in
Kelvin’s discussion of the ‘degradation of energy”’(ibid).

Brillouin undertakes an entropy balance on the Demon system to
quantify the negentropy transformations. The torch is a radiation

20 Positive or negative.
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source not at equilibrium and so “pours negative entropy into the
system”. If the filament is at a temperature 7} and radiates energy
E, then the radiation emission is accompanied by an entropy increase
S¢ = E/Ti. As just noted, since 171 > Tj (the system temperature) the
filament is a source of relatively high negative entropy radiation. If the
Demon does not act, the energy E is dissipated with a global entropy
increase of S = E/Ty > Sy > 0. However, if the Demon is to act, the
minimum requirement for the Demon to determine the state of an ap-
proaching molecule it that at least one quantum of energy be scattered
by the molecule and be absorbed by the Demon’s eye. For the light to
be distinguishable from the background black body radiation, the en-
ergy of the photon, hvi, must be much greater than background, k7j,
where h and k are Planck’s and Boltzmann’s constants respectively.
Thus the entropy increase of the Demon will be AS; = hvy /Ty = kb
where b is the ratio of photon energy to background radiation energy
(hvl/k‘To > 1).

Once the Demon has information concerning the molecule, it can
be used to reduce system entropy: information is converted to negen-
tropy. On receipt of the information, the state of the system is more
completely specified, hence the number of possible molecule arrange-
ments, “complexions”, has been reduced. Let Py represent the initial
total number of microstate configurations (equivalent to Boltzmann’s
thermodynamic probability W) and P; be the number of microstate
configurations after the receipt of information. Thus we can define p
to be the reduction on the number of complexions: Py — P;. By Boltz-
mann’s formula, So = kln Py and S; = kln P;. Thus the change in
entropy on sorting becomes:

AS; =81 — Sy = kIn(P,/Py) ~ —k(p/Py) < 0,

(since for most cases p << Fy). Calculating the total entropy balance

we have:
ASg+ AS; = k(b — p/Po) > 0,

since b > 1 and p/Py > 1. Brillouin says,

“The final result is still an increase of entropy of the isolated
system, as required by the second principle. All the Demon can
do is recuperate a small part of the entropy and use the infor-
mation to decrease the degradation of energy.

In the first part of the process ..., we have an increase of
entropy ASy, hence, a change AN, in the negentropy:

ANg = —kb < 0, a decrease.
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From this lost negentropy, a certain amount is changed into in-
formation, and in the last step of the process ... this information
is turned into negentropy again:

AN; = k(p/Fy) > 0, an increase” [10].

This is the justification for the negentropy/information cycle stated
earlier.

Cursory study of Brillouin’s model reveals a conspicuous detail. Bril-
louin talks of the “information turned into negentropy”, “negentropy
changed into information” and the “transformation of information into
negentropy”. Nowhere does Brillouin equate information and negen-
tropy as Schrodinger does (see next section). In the measurement step
of Brillouin’s model, only “a certain amount” of the “lost negentropy”
is changed into information. Perhaps Brillouin intends that the remain-
der accounts for the information in the Demon, assuming it is physical.
However, if this is the case, he does not state this explicitly.

As noted previously, Brillouin defines information in a Shannon-like
manner as the logarithm of the number of equal a priori possibilities.
Further, he distinguishes between two classes of information:

“1. Free information I, which occurs when the possible cases
are regarded as abstract and have no physical significance.

2. Bound information I, which occurs when the possible
cases can be interpreted as complexions of a physical system.
Bound information is thus a special case of free information”
[11].

He makes this distinction in order to draw a connection between
thermodynamic entropy and information. This is an attempt to avoid
thorny epistemological issues concerning information, such as the in-
tractability of the determining the information gain when a person
hears some news or the information loss when someone forgets. Only
bound information is associated with entropy changes of a system. Con-
sider a system in which the “complexions” (P, and Py) of two tempo-
ral states of the system (corresponding to times ¢y and ¢;) are equally
probable cases. Then if P; < Py the physical entropy of the system
will decrease and “the entropy decrease when information is obtained,
reducing the number of complexions, and this information must be
furnished by some external agent whose entropy will increase. The re-
lation between the decrease in entropy of our system and the required
information is obvious, for

Ibl = k(lnPO — lnPl) = So — Sl,
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or
Sl = S() - Ibl'

the bound information appears as a negative term in the total entropy

of the physical system, and we conclude:

Bound information = decrease in entropy S = increase in negentropy
N,

where we define negentropy to be the negative of entropy” (ibid).

Thus, on this account not all information is negentropy, only bound
information. Brillouin calls the relationship between bound information
and entropy the “negentropy principle of information”. However has we
have seen above in the conversion cycle in Maxwell’s Demon,

negentropy — information — negentropy,

the relationship is not truly one of identity; it is not even conserva-
tive. This leads me to judge that Brillouin negative entropy principle
does not provide a truly foundational account of the nature of infor-
mation.

Brillouin’s version of the principle the negentropy principle of in-
formation is akin to some later work of Erwin Schrédinger’s in which
Schrédinger examines the somewhat stronger relationship between or-
der and negative entropy. This work is examined in the following sec-
tion.

Schrédinger

Additional thoughts on the physical nature negentropy come from Er-
win Schrodinger. In his 1944 book What is Life? Schrodinger considered
the relationship between entropy and order. In trying to work towards
an answer to the question posed in the title of his book, Schrédinger
observed that living matter was ordered in a way that evaded the ‘de-
cay to equilibrium’. He says, “Life seems to be orderly and lawful be-
haviour of matter, not based exclusively on its tendency to go over
from order to disorder, but based partly on existing order that is kept
up” [70]. Schrodinger notes that the systems that tend towards equi-
librium, move towards a state of maximum entropy, which, he notes,
is a state of death. Living systems maintain ordered integrity not just
by energetic intake, but by drawing from the environment negative en-
tropy, thus staving off the tendency to maximum entropy. Schrodinger
equates negentropy with order by considering Boltzmann’s equation to
be broadly interpretable as entropy = klog(D), where D represents
disorder. He then notes the following;:
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“If D is a measure of disorder, its reciprocal, 1/D, can be
regarded as a direct measure of order. Since the logarithm of
1/D is just minus the logarithm of D, we can write Boltzmann’s
equation thus:

—entropy = klog(1/D).

Hence the awkward expression ‘negative entropy’ can be re-
placed by a better one: entropy, taken with the negative sign, is
itself a measure of order”( ibid, p.73).

What Schrédinger adds to the thermodynamic/Statistical Mechanics
approach to information theory is a direct identification of the nega-
tive sign of entropy with order. The extension of this relationship to
information relies on the nature of the correlation of information and
order. I do not equate the two (and nor, I feel, does Schrodinger). But
I do believe that they are related via the notion of degrees of freedom
as outlined previously. This will be discussed further in Section 4.6.

Signpost

In this book I am attempting to construct a theory of the physical foun-
dations of information. This section has been an historical examination
of the study of the relationship between thermodynamic entropy and
information. Early in the section we looked at the development of ther-
modynamics with a special interest in the Second Law and established
the relationship between entropy and work and between entropy and or-
der, or more accurately, between entropy and degrees of freedom. Then
we reviewed the discovery of the relationship between the macroprop-
erty entropy and a microsystem’s states noting the important role that
combinometrics plays relating entropy to the microdynamics of a sys-
tem. Discussion of the role of measurement in simple Maxwell’s Demon
systems led us to consider the application of information regarding the
microstate of a system to extract work in an apparent violation of the
Second Law and, finally, to the relationship between negative entropy
and information.

Four fundamental concepts should be taken from this section for use
in the development of my theory. The first is the relationship between
entropy and the number of identical states in a system as defined in
Boltzmann’s theorem. We will see in Section 4.5 that entropy is pri-
marily about counting distinguishable possible states and that, due to
the intimate relationship between entropy and information as noted
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by Brillouin and Schrédinger, information is also combinometrically
grounded.

The second important concept introduced in this section is ‘mea-
surement’. Szilard, in considering Maxwell’s Demon, noted that the
measurement process is essential for the preservation of the Second
Law in a Demon cycle. Measurement (and its limitations) is a signifi-
cant element in the development of my account of information, though
in somewhat different ways. The place of measurement plays a funda-
mental role in Szilard’s formulation in that measurement generates at
least as much entropy as was reduced in the gas thus preserving the Sec-
ond Law. Under my interpretation, measurement bounds the amount
of information that may be apprehended from an object. In Section
3.2 T will discuss the apprehension of information from an informatic
object and in Section 4.5.2 I will further discuss measurement, Demons
and information.

The third concept introduced in this section is ‘memory’. Memory
is closely tied to measurement for if one is to say that the value of
a fluctuating parameter of a system, y, is different from or the same
as an earlier measurement of the parameter, x, then some storage fac-
ulty is required. The concept of distinguishability of temporal states
of a system is developed in Section 3.1, and the relationship between
information and memory is discussed in Section 4.2.2

The final concept introduced here is the relationship between work
and information. In Section 4.6 we will examine the effect increasing in-
formation on work capacity by looking at Gibbs’ Paradox and through
further consideration of Maxwell’s Demon.

Boltzmann’s H-theorem proved to be an inspiration to others who
were thinking about information outside the field of thermodynam-
ics with the concept of thermodynamic probability transplanted into
realms where occurrence probabilities apply, for example, in the trans-
mission of electrical communication signals. This field is widely referred
to as “Information Theory” and is reviewed in the next section.

2.2.2 Information (Communication) Theory

Although much development of theories of information was undertaken
by Leo Szilard and other writers?! in the first half of the 20" Century,
paternity of modern information theory is generally assigned to Claude
Shannon. In his 1948 article “A Mathematical Theory of Communica-
tion”, Shannon addresses the problem of communication: the exact or

2L N. Weiner, H. Nyquist, R.V.L Hartley, J. von Neumann, etc.



2.2 A Survey of Information Theories 33

approximate transmission and reception of a message from a generat-
ing source. It is from this perspective that he develops his theory of
information.

Shannon’s concerns are purely with engineering. Semantic aspects
of information, e.g. the content of the message and its meaning to the
recipient, are irrelevant to the problem; the theoretic description which
he seeks must function not just for an actual, individual message but for
each possible message that may be sent. The approach is fundamentally
probabilistic. To develop his theory, Shannon examines the output of
a discrete information source that generates a message as a Markov
Process.?? Each possible message that can be generated has associated
with it a probability p; of its occurrence and there are n such messages.

Shannon attempts to define a quality which will measure the amount
of information generated by the process. He searches for a function
H(p1,p2, ... pp) that will quantify our reduction in uncertainty on
receiving the message subject to the following desiderata:

1. H should be continuous in p;.

2. If all the p; are equal, the H should be a monotonic increasing
function of n.23

3. Each event (symbol generation) should be capable of being linearly
decomposed into two or more constituent events with their own
proportional probabilities. [72].

Shannon concludes that the only function that satisfied the criteria
was of the form:

n
H=-KY) pilogp

i=1
where K is a constant according to units chosen (i.e. the base of log-
arithm used). In what is more than a nod to Boltzmann, Shannon
assigns H to be the entropy of the set of probabilities (p1,p2, ... pn).
This function has several properties which Shannon believes further
substantiates its use as a measure of information:

1. H = 0 iff all the p; but one are zero, this one having
value 1. That is, information is zero if the outcome is already
certain.

22 A Markov process is a random process whose future probabilities are determined
by its most recent values.

23 This means that as the number of equiprobable symbols increases, there is more
uncertainty.
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2. For a given n, H is maximum and equal to log n when all
the p; are equal, that is, % This is the case of maximal
uncertainty.

3. The uncertainty?* of a joint event is less than or equal to
the sum of the individual uncertainties, having equality only
when the two events are independent.

4. Almost as a corollary to point 2, any change towards the
equalization of the probabilities pq,ps, ... p, increases H.

5. The uncertainty of a joint event x,y is the uncertainty of x
plus the uncertainty of ¥ when x is known. Thus the uncer-
tainty of y is never increased by knowledge of x [72].

Like Szilard and Brillouin, Shannon uses a Boltzmann-like entropy
theorem to quantify information capacity. In Shannon’s account in-
formation is evaluated by summing uniquely identifiable distributions.
He also opens up the possibility of evaluating the mutual or condi-
tional information in multiple messages by calculating joint entropies
or chaining their entropies and Shannon’s approach has proved to be
valuable in practical applications in the fields of communications and
electrical engineering.?®

Shortly after Claude Shannon proposed his account of information
researchers in mathematics and the nascent field of computer science
began thinking about information in a manner totally different from the
Boltzmann-based approaches of Szilard, Brillouin and Shannon. This
third and markedly novel approach to the quantification of information
emerged from the mid 1950’s and on from the work of Kolmogorov,
Solomonoff and Chaitin. Though still having its conceptual origins in
probability theory, Algorithmic Information Theory provides, through
applied computability theory, a method of measuring the intrinsic in-
formation in an object’s description. The following section reviews this
approach to providing an account of information.

2.2.3 Algorithmic Information Theory

Algorithmic Information Theory was born out of inconsistencies that
arise between intuitive notions concerning regularity and answers pro-
vided by standard probability theory. In order to illustrate the nature
of these dissatisfactions, consider a binary experiment (coin-toss) con-

24 Shannon uses uncertainty and entropy interchangeably.
25 Constraints on the maximum possible rate of transmission of information via a
standard modem are determined by Shannon’s theorem.
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ducted 23 times. Now imagine we obtained the following results from
three trials:

Trial 1: 10110001111001100011010
Trial 2:11111111111111111111111
Trial 3:00110111001011101111000

Probability theory tells us the probability of obtaining the sequence
shown in trial 1 is 272 (about 0.00000011920). This value is also true
for trials 2 and 3. However, there is something intuitively unsettling
about accepting that the first and second results are equally probable.
The first result “looks” more random; it appears more consistent with
the process that is supposed to have generated the string. If presented
with the second sequence as a result of a coin-toss, an observer may be
entitled to doubt the fairness of the coin. The third trial may at first
glance appear random, but there is also regularity in this sequence.
The first trial was generated by tossing a 20-cent coin. The second
is obviously just a series of 23 ones. Listing the integers 0 to 8 in
binary format created the third series.?® The issue here is that neither
of the probability values of trial 1 nor of trial 2 tells us anything about
the inherent order that is present in each sequence, independently of
how they were generated. The use of a probability method assuming
equiprobable occurrences will not truly account for the information
embedded in the order in the sequences. Something more is required,
something that takes into account the generation process. Algorithm
Information Theory represents an attempt to meet that need.

The theory was proposed separately by R. Solomonoff of the Zator
Company in 1960, A.N Kolmogorov in 1965 and by G. Chaitin also in
1966 and thus is justifiably called by some the Solomonoff-Kolmogorov-
Chaitin theory of information. However it is more common to refer to
the entire field of Algorithmic Information Theory and descriptor com-
plexity as “Kolmogorov Complexity”. Once developed, I will show how
the asymmetry, foundational account of information is also compatible
with Algorithmic Information Theory.

Before examining Algorithmic Information Theory in detail it is
necessary to first look at two underlying notions: Turing Machines and
randomness.

26 This is the beginning of Champernowne’s Number in binary format. Champer-
nowne’s number base 10 is 0.123456789101112131415161718192021.
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Turing Machines

The notion of a universal computing machine arose initially out of early
work by Alan Turing in the consideration of Computable Numbers [81].
The model of a ‘Turing Machine’ is important to Algorithmic Informa-
tion Theory because it provides a rigorous definition of computability
by developing a mathematically well-defined means of generating de-
scriptive integer sequences, or “strings”. Turing’s original conceptual
engine consisted of an automated machine (a-machine) that mimicked
human pen and paper implementation of an algorithm. It consisted of
simple acts of iterated reading or writing of a symbol and the trans-
ference of ‘focus’ from one place on the paper to a different place on
the paper, usually thought of as a continuous tape. The action of the
machine depends solely on the current state of the a-machine and the
symbol at the momentary focal location. Turing writes,

“We may compare a man in the process of computing a
real number to a machine which is only capable of a finite
number of conditions ¢1, g2, ..., qgr which will be called “m-
configurations”. The machine is supplied with a “tape” (the
analogue of paper) running through it, and divided into sections
(called “squares”) each capable of bearing a “symbol”. At any
moment there is just one square, say the r-th, bearing the sym-
bol (r) which is “in the machine”. We may call this square the
“scanned square”. The symbol on the scanned square may be
called the “scanned symbol”. The “scanned symbol” is the only
one of which the machine is, so to speak, “directly aware”. How-
ever, by altering its m-configuration the machine can effectively
remember some of the symbols which it has “seen” (scanned)
previously. The possible behaviour of the machine at any mo-
ment is determined by the m-configuration ¢, and the scanned
symbol (7). This pair g, (r) will be called the “configuration”:
thus the configuration determines the possible behaviour of the
machine. In some of the configurations in which the scanned
square is blank (i.e. bears no symbol) the machine writes down
a new symbol on the scanned square: in other configurations
it erases the scanned symbol. The machine may also change
the square which is being scanned, but only by shifting it one
place to right or left. In addition to any of these operations the
m-~configuration may be changed. Some of the symbols written
down will form the sequence of figures which is the decimal of
the real number which is being computed. The others are just
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rough notes to “assist the memory”. It will only be these rough
notes which will be liable to erasure” [81].

Many variants of Turing Machines have since been proposed, prin-
cipally involving differing numbers of tapes and state representations.
These variations do not affect the underlying principle of computation;
their chief advantage lies with explanatory powers. Working memory,
the “rough notes” that Turing refers to, is often included on a separate
tape and the written output is presented separately. These features are
included in a variant proposed by Chaitin,

“Each Turing machine has three tapes: a program tape, a
work tape, and an output tape. There is a scanning head on
each of the three tapes. The program tape is read-only and each
of its squares contains a 0 or a 1. It may be shifted in only one
direction. The work tape may be shifted in either direction and
may be read and erased, and each of its squares contains a blank,
a 0, or a 1. The work tape is initially blank. The output tape
may be shifted in only one direction. Its squares are initially
blank, and may have a 0, a 1, or a comma written on them, and
cannot be rewritten. Each Turing machine of this type has a
finite number n of states, and is defined by an nx3 table, which
gives the action to be performed and the next state as a function
of the current state and the contents of the square of the work
tape that is currently being scanned. The first state in this table
is by convention the initial state. There are eleven possible ac-
tions: halt, shift work tape left /right, write blank/0/1 on work
tape, read square of program tape currently being scanned and
copy onto square of work tape currently being scanned and then
shift program tape, write 0/1/comma on output tape and then
shift output tape, and consult oracle. The oracle is included for
the purpose of defining relative concepts. It enables the Tur-
ing machine to choose between two possible state transitions,
depending on whether or not the binary string currently being
scanned on the work tape is in a certain set, which for now we
shall take to be the null set” [21].

The capacity for a Turing machine to algorithmically generate an
output string in a rigorously defined manner makes it invaluable for de-
velopments in Algorithmic Information Theory. We will use the Chaitin
defined machine in future references to Turing machines.

Distinguishing between a string that has been generated algorith-
mically by a Turing machine and one that is in some sense random is
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significant in Algorithmic Information Theory. This relies on the abil-
ity to measure, or at least detect, randomness. We examine this in the
next section.

Randomness

Randomness lies at the heart of considerations of Algorithmic Infor-
mation Theory; indeed, it is in the defining of "randomness” that the
theory’s core is founded. We commence by considering the occurrence of
numerals and groups of numerals in sequences. We call these sequences
strings. Smaller contained sections of these sequences are termed sub-
sequences or substrings.

One simple test of randomness in a string expressing a number is
to show that, at least statistically, it is a Normal Number.??. It is
insufficient to simply require that all possible states in a sequence be
equiprobable. Examples abound which pass this test and yet are clearly
non-random; Champernowne’s number is one example.

As we shall see later, an appreciation of the difference between a
state-generated sequence and a string (or number) formed by a concate-
nation of symbols representing those states is crucial to understanding
information as it is used in Algorithmic Information Theory.

Richard von Mises’ interpretation of randomness was an important
starting point for the development of Algorithmic information The-
ory. Von Mises was a mathematician who specialised for the most part
in hydrodynamical and aerodynamical studies but is possibly best re-
membered for his continuing work on the frequency interpretation of
probability commenced by Venn. Kolmogorov has the following to say
regarding von Mises,

“ ... the basis for the applicability of the results of the math-
ematical theory of probability to real 'random phenomena’ must
depend on some form of the frequency concept of probability,
the unavoidable nature of which has been established by von
Mises in a spirited manner” [47].

We will note in Section 2.3.2 that von Mises’ definition of random-
ness requires that, for any attribute under consideration in a string,

2T A Normal Number is an irrational number for which any finite pattern of numbers
occurs with the expected limiting frequency in the expansion in a given base. For
example, for a normal decimal number, each digit 0-9 would be expected to occur
1/10 of the time, each pair of digits 00-99 would be expected to occur 1/100 of
the time, etc [86]
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the limiting relative frequency of any subsequence be the same as the
limiting relative frequency for the whole sequence. In terms of binary
strings we could consider an infinite series of ones and zeros:

“We say that it [the series] possesses the property of ran-
domness if the relative frequency of the 1’s (and therefore the
0’s) tends to a certain limiting value which remains unchanged
by the omission of a certain number of the elements and the
construction of a new sequence from those which are left. The
selection must be a so-called place selection, i.e., it must be
made by means of a formula which states which elements in
the original sequence are to be selected and retained and which
discarded” [58].

A principle requirement is that the choice of the selection formula be
made independently of the result of the corresponding observation, be-
fore anything is known about the result. For example, consider a binary
string formed by a Bernoulli (binary) experiment (e.g. coin tossing):

10100101110011011010001011110001011010011011001101

The frequency of 1’s in the string is 27/50 = 0.54. By increasing
the number sampled (conducting more trials) we may note that the
relative frequency tends to 0.5. By using a formula that samples every
odd element from the 50 samples above, we find the frequency of 1’s
is 14/25 = 0.56. If, on the other hand we chose to sample elements at
only prime number positions (2 3 5 7 11 13 17 19 23 29 31 37 41 43
47) the frequency of 1’s is 9/15 = 0.60. With strings larger than the 50
elements shown above, measured from the same experimental system,
the limiting frequency of the ‘odd’ sampling method and the ‘prime’
sampling method would both tend to 0.5. Note that both the ‘odd’
and ‘prime’ methods can be chosen before knowing the exact result of
conducting the measurement fifty times and obtaining the above string.

It is possible to choose a sampling method that would give a rad-
ically different relative frequency. Consider the case where we sample
15 elements from the above binary string at position numbers:

1,3,6,8,9,10,13,14,16,17,19,23,25,26,27.

In this case the relative frequency of 1’s is 15/15 = 1.00. It is also possi-
ble that selections be made to give any desired relative frequency. This
is not a problem for von Mises’ principle of randomness which only
requires that the relative frequencies of selected subsequences converge
on the whole sequence’s limiting frequency as the subsequence lengths
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become at least denumerably infinite under the selection formula. How-
ever, the formulation of the selection criteria as described above would
be ruled invalid, for von Mises maintains, under his definition of place
selection, that the formula used for the selection of subsequences from
infinite sequences “must leave an infinite number of retained elements
and must not use the attributes of the selected elements, i.e., the fate
of an element must not be affected by the value of its attribute.” (op.
cit. p.88) Assuming that the 50-element string above is just the first
50 elements of an infinite sequence, the selection of the 15 elements
(1,3,6,8,9,10,13,14,16,17,19,23,25,26,27) to obtain a relative frequency
of 1.0 violates both von Mises’ conditions.

The existence of a limit to which relative frequencies converge is a
big assumption, and though it appears to be borne out by vast quanti-
ties of empirical evidence from gaming and other sources, its existence
is not guaranteed. Von Mises commissions the concept of a collective,
a set of elements that gives rise to a ‘mass phenomenon’. A collective
is “a sequence of uniform events or processes which differ by certain
observable attributes, say colours, numbers, or anything else” [58].

In early work von Mises acknowledges that, under his concept of
randomness, proof of existence of a collective, in the analytic sense, is
impossible.

“A collective is completely determined by the distribution,
i.e. by the (limits of the) relative frequencies for each attribute;
it is however impossible to specify which elements have which
attributes. .. [T]he existence of a collective cannot be proved by
means of the actual analytical construction of a collective in a
way similar, for example, to the proof of existence of continuous
but nowhere differentiable functions, a proof which consists in
actually writing down such a function” [59].

A collective that is truly random cannot be described by a formula
or procedure. Von Mises clearly states this in the context of binary
strings: “A sequence of zeros and ones which satisfies the principle of
randomness cannot be described by a formula or by a rule such as:
‘Each element whose place number is divisible by 3 has the attribute
1; all others the attribute 0’; or ‘All elements with place numbers to
squares of prime numbers plus 2 have the attribute 1, all others the
attribute 0’; and so on” (ibid). Note here that the constraint of the
impossibility of defining a function to represent a collective is directly
related to the previous requirement of all infinite subsequences having
the same limiting frequency as the entire sequence. If a function were
available to describe the collective, then one could modify it to con-
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struct a subsequence that was comprised solely of 1’s, or indeed any
limiting relative frequency one desired.

An historical problem here arises for von Mises. At the time of his
writing the influence of Logical Positivism was still being felt. Russell’s
theory of the predominance of description for existence and work by
the British ‘analysts’ placed pressure on von Mises to justify existential
status for an entity incapable of representation by explicit description
or formula. Harold Jeffreys makes this criticism of von Mises definition
of the collective:

“The proof even of existence [of the collective] is impossi-
ble. On the limit definition, without some rule restricting the
possible orders of occurrence, there might be no limit at all”
[44].

In response to the analysts’ criticism, von Mises’ considers the possi-
bility of restricting the definition of random sequences to a constructible
subclass. Bernoulli sequences?® have been shown [26] to be able to
be constructed, hence, according to Jeffreys, existent. However this
new definition of random sequences would prove too restrictive. Sub-
sequence selection methods such as prime number selection would be
precluded. In fact, limiting subsequence selection methods to any rule-
based process would exclude some potentially legitimate subsequence
due to the infinite number of selection methods. Instead, von Mises
abandons attempts to placate critics by proving a collective’s existence
via formal description, and assumes an axiomatic approach, declar-
ing that if we assume the aforementioned probability criteria hold for
collectives, it can be shown?® that selection of subsequences does not
give rise to contradictions. He says, “Given a sequence of attributes,
the assumption that the limits of the relative frequencies of the var-
ious attributes are insensitive to any finite or enumerably infinite set
of place selections cannot lead to a contradiction in a theory based on
this assumption” [58].

Further problems exist, however, for von Mises’ definition of ran-
domness. Alonzo Church maintains that it is too simplistic to be a rig-

28 A Bernoulli sequence is one that is infinitely decomposable in a linear manner
(i.e., pick every nt" element of the original sequence to form a sub-sequence, then
offset by one and select new subsequence and repeat n—1 times) into sets of
sub-sequences such that set of n sub-sequences has the following properties:

Each of the sub-sequences has the same limiting frequency as the original;
The sub-sequences are mutually independent,
This is true for all n.

29 This has been done by A.H. Copeland, A. Wald and W. Feller.
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orous definition. Moreover it is possible to create a selection criterion
that allows subsequences that violate the equality of relative frequency
stipulations. Consider the following selection strategy ¢ proposed by Li
and Vitanyi, which generat